
Software Consumers Playbook: SBOM 

Acquisition, Management, and Use 
 

Version 1.0 
2021-11-17 

NTIA Formats and Tooling Working Group 

 

Overview 

Acquisition of an SBOM from a Supplier 

SBOM Coverage for Software Systems 

Software Entity Resolution 

Third-Party Processes and Platforms 

Ongoing Monitoring 

Intellectual Property and Confidentiality Status of SBOMs 

Confidentiality 

Intermediary Suppliers 

References 

 

 

Overview 

This playbook outlines workflows for the acquisition, management, and use of Software 

Bills of Materials (SBOM) by software consumers. “Software consumer” is broadly 

defined to include commercial and non-commercial entities acquiring third-party 

software capabilities from a supplier. A supplier may include:  

 

● A commercial software publisher; 

● A contract software developer supplying a software deliverable; and 

● A free and open source software (FOSS) supplier maintaining source code in an 

open source repository, binary artifacts in a package manager, or both. 



 

A supplier may also be known as a manufacturer, developer, integrator, maintainer, or 

provider. Ideally, all suppliers are also authors of SBOMs for the suppliers’ software 

capability. Most suppliers are also consumers. A supplier with no included upstream 

components is a root entity. 

 

SBOM acquisition from managed service providers (MSPs) or software as a service 

(SaaS) is outside the scope of this document, since inclusion criteria for an SBOM from 

MSPs are not well-defined.  

 

Acquisition of an SBOM from a Supplier 

 

SBOM acquisition can occur during: 

 

● Contractual procurement of a commercial product 

● Download of commercial closed-source software 

● Contractual procurement of professional services that include the development 

and delivery of software capabilities 

● Acquisition of open source software applications or components for internal 

deployment. (Note: Acquisition of open source software applications or 

components for internal development is discussed in the Supplier Playbook.) 

● Discovery processes as a device connects to a network. 

 

SBOM Coverage for Software Systems 

Software deliverables covered by SBOMs vary in scope and complexity. These include: 

 

● A single application with internal dependencies but no install-time dependencies 

● An application with install-time dependencies and internal dependencies 

● Software containers 

● Software systems with multiple endpoints  

 

The specification of requirements by consumers should include coverage for all 

software components delivered by a supplier, whether these are internally incorporated 

components of a software application, runtime dependencies, or the contents of a 

container.  

 



Supplier Provision: An SBOM may be provided by a supplier or vendor before delivery 

of a software product, as part of the customer pre-procurement process, with the 

product at time of delivery, and/or with updates to the product as updates are delivered 

to the customer. This document specifically excludes software as a service (SaaS) in 

the definition of product delivery, and excludes dependencies on vendor or third-party 

SaaS as an attribute of a product SBOM. Extensions of this document and the SBOM 

scope will likely include SaaS dependencies of installed software as a domain of data 

enumerated by an SBOM. But in the context of this document, a supplier-provided 

SBOM is defined to include the contents of a software deliverable that is transferred 

from a supplier to a consumer, either directly or through a vendor or integrator. 

 

In order to represent a complete bill of materials that creates sufficient transparency for 

software asset management and vulnerability management by the consumer, a supplier 

SBOM must enumerate third-party software dependencies (both open source and 

proprietary) incorporated into the supplier product, as well as installed dependencies 

required at runtime. For instance, if a supplier download manager installs software 

drivers, libraries, or runtime dependencies along with the supplier’s application, a 

complete SBOM for that product would include third-party dependencies within the 

compiled binary as well as software installed by the download manager. In short, if a 

supplier product installs a third-party dependency on the consumer’s system, either as a 

constituent component of the product or as an installed enabling capability, it should be 

enumerated in the SBOM in order to provide requisite transparency for software asset 

management and vulnerability management. The alternative of failing to list installed 

runtime dependencies leaves a dangerous gap in situational awareness that exposes 

the consumer to compromise when an outdated and vulnerable installed dependency is 

exposed and a remediated update has not been provided by the supplier.  

 

The delivery of vendor products in software containers is increasingly common and 

presents a similar scenario. The vendor product may not include vulnerable 

dependencies, but an enabling software product installed in the container may be 

vulnerable and exploitable. For this reason, a manifest of container contents should be 

provided by vendors as part of an SBOM data workflow. A container SBOM, listing the 

container’s contents -- including vendor application(s) -- may be provided as a separate 

item from the SBOM for the vendor product that includes the product’s constituent 

components.  

 

Contractor Provision: For software deliverables provided by a supplier who is 

developing or integrating these capabilities under contract from the consumer, the 

intellectual property status of contractor-developed software and software systems as 

bespoke deliverables, and the terms and conditions of contracts for professional 



services, give consumers more latitude to require and enforce software transparency 

and SBOM provision than exist within the contractual framework of supplier product 

acquisition. Specifically, the generation and update of SBOMs is a service that can be 

specified and required under the terms of a master services agreement (MSA) for 

software development. Statements of work under that agreement and flow-down 

provisions to subcontractors are within the scope of an MSA.  

 

For source code delivered by a contractor, an SBOM should accurately reflect all 

dependencies required to compile the code, to ensure the consumer can compile the 

code and take full delivery of the contracted capability. For source code deliverables, 

the consumer may also choose to compile the code on the consumer’s infrastructure to 

verify the accuracy and completeness of the SBOM, and may, as part of that build 

process or using binary composition analyses tools, generate a build-time SBOM as an 

automated process for cross-comparison with the supplier SBOM, or to provide more 

complete data that includes build-time metadata.  

 

For binaries delivered by a contractor, SBOM acquisition is similar to supplier SBOM 

acquisition. However, the consumer may require more complete data in a contractor 

binary SBOM, such as build-time metadata and authoritative supplier and product 

identities for proprietary third-party components that are unlikely to have discoverable 

public identifiers. Under the terms and conditions of a professional services contract, the 

consumer may also reserve the right to reverse-engineer a binary deliverable to verify 

its composition against the SBOM provided by the supplier, and to investigate and 

resolve any discrepancies in a mutually agreed-upon manner.  

 

Open Source Software: While some open source software projects generate SBOMs as 

part of their distribution processes (e.g., as an information asset available for binary 

packages and distributions), this practice is not, and is not likely to be, universal. 

Likewise, open source code repositories may include formatted SBOMs, but the 

purpose of a source code repository -- to enable development by one or more 

contributors -- inherently requires enumeration of dependencies in manifests such as 

requirements.txt or project object model (POM) files that are necessary to compile the 

software. In the absence of a formatted SBOM (e.g., Software Package Data Exchange 

[SPDX], CycloneDX, or Software Identification [SWID]), the consumer may derive an 

SBOM from an open source code repository, either by implementing automated 

generation of an SBOM in the consumer build pipeline or by using an open source or 

commercial capability to generate an SBOM from the repository.  

 

It is important to note that the composition of binary packages may differ in security-

relevant ways from the open source code that a package points to as its contents, 



because additional dependencies are often included when the binary package is 

compiled. For this reason, it is important to understand the point of origin for open 

source components, and to realize that ambiguity about point of origin -- source vs. 

binary -- should be resolved by assuming that the component has the more common 

higher-risk profile of a binary package, which may have additional dependencies and 

vulnerabilities.  

 

SBOM Acquisition:  The consumer needs to know that an SBOM exists, where to find 

it, and how to access it.   Suppliers can support this through “advertisement” or enabling 

consumer “discovery.” This is separate from the mechanisms of access control and 

delivery. Different suppliers may choose different approaches for advertisement and 

delivery.1   

 

For example, in the case of on-disk software, the SBOM can sit next to the installed 

software.  In other cases, either the device or other relevant documentation can point to 

a URL that contains some standardized information on how to obtain the SBOM. There 

are also emerging technologies devoted to sharing supply chain data that could also 

convey SBOM data. Other suppliers may want to rely on their existing communication 

channels with their customers, such as a customer portal to provide a pointer to the 

SBOM. 

 

When the supplier does not wish the SBOM to be public, the supplier should build in the 

appropriate protections, and work with the consumers to effectively provision access. If 

integrity and authenticity checks are available, the consumer should verify the integrity 

and origin of the SBOM. 

 

SBOM Ingestion and Parsing 

 

There are two scenarios for what happens after an SBOM is acquired.  

Scenario 1: Data Feeds Into Workflows 

Best practice is that data from SBOMs feeds enterprise workflows, including 

procurement, asset management, vulnerability management, and overarching supply 

chain risk management and compliance functions. In this scenario, the SBOM is less 

useful as a file than as a collection of data that can be parsed, extracted, and loaded 

(ETL’d) into automated processes or systems of record.  

 

There are three options for SBOM ingestion and parsing for enterprise ETL: 

                                                
1 For more information on SBOM exchange, including advertisement and access, see Sharing and 

Exchanging SBOMs.https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-
10feb2021.pdf  

https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf


 

1) Internally developed tooling (i.e., scripts): In enterprises that have the technical 

resources or the desire to internally develop ETL processes for SBOMs, methods 

such as Python scripts may be used to extract and load data from specified 

SBOM fields into external data platforms and workflows. 

 

2) Open source software tooling for extraction of data from SBOMs: Different 

approaches are available as open source projects. Some tooling is already 

provided by package or dependency management systems for open source 

software itself; a set of commands besides the typical build, install, or package 

commands provide the generation of a list or even a tree of dependencies. Such 

output is suitable for transformation of the data into an SBOM format. Another 

group of tools analyzes the software project structure along with metadata to 

derive an SBOM. Usually, such tools are dependent on the software platform that 

was used. As such, different open source projects provide different levels of 

support for the various software platforms available.  And, in the open source 

community, there is tooling that monitors the compile or build process to 

precisely track the usage of files and libraries. This resulting list can be used to 

assemble an SBOM. 

 

3) Commercial Tooling: Increasingly, commercial software packages and platforms 

maintain an auditing function on SBOMs. These include vendor management 

platforms, configuration management systems, software supply chain assurance 

platforms, and software asset management systems. Sector specific commercial 

solutions, such as those used in medical devices and fleet management, are on 

the adoption curve for SBOM ingestion. Because capabilities in this field are 

emerging rapidly, cataloguing commercial solutions that support SBOM ingestion 

is not in this playbook.  

 

Extraction from formats such as SPDX, CycloneDX, and SWID is relatively 

straightforward based on field names. However, these methods do not enable full 

resolution of SBOM contents. If SBOM and components include digital signature or 

hashes, best practice is to verify them. Since many suppliers do not maintain chain of 

custody or produce SBOMs using automated and verifiable methods from a software 

build, some level of entity resolution may be required. Resolution of transitive 

dependencies for an SBOM that enumerates only direct dependencies requires 

software entity resolution.  

 

Scenario 2: Archival Storage of SBOM Files 



A second scenario is that a consumer lacks the capacity, the intention, or any regulatory 

requirement to make use of the information. If the SBOM is supplied but does not feed 

any kind of enterprise workflow, the playbook ends with content management: SBOM 

time of receipt, file location, and what are the content management, data retention, and 

life cycle policies for the storage of that file. This may entail storage in an enterprise 

inventory or information technology (IT) asset management database (e.g., the same 

database or file system that stores the serial numbers of computers or furniture).  

 

If specific security measures for the storage of supplier SBOM information are 

contractually specified, the consumer must ensure that the security controls for systems 

into which SBOM data flows meet or exceed controls specified in the terms and 

conditions of SBOM provision by a supplier.  

 

Life cycle policies for storage of SBOMs as files should correlate to the life cycle of the 

software deliverable represented by that SBOM. The file should persist until and unless 

the consumer has properly provably decommissioned that software asset, i.e., 

automated scans or manual inventories indicate that the software asset corresponding 

to the SBOM is no longer present or installed on the consumer’s infrastructure, and the 

information is no longer relevant for legal or forensic purposes (e.g., discovery of a 

breach that occurred before a software asset was updated or removed). 

 

Decommissioning -- verification that an asset has been removed from a system or 

facility -- is an order of magnitude more difficult than deploying assets. It requires a 

higher level of transparency and positive control than most IT enterprises possess. For 

this reason, especially given the relatively small size of SBOMs, the default life cycle 

policy for SBOMs should be archival retention.  

Software Entity Resolution 

There are a number of scenarios in which software entity resolution is required to 

authoritatively identify components of an SBOM, so components can be accurately 

mapped to vulnerabilities and disambiguated in configuration management and software 

asset management workflows. These scenarios include: 

 

● SBOM auto-generated as the artifact of a version-controlled software build: 

SBOMs that are automatically generated as an artifact of a version-controlled 

software build are relatively clean, in the sense that the names of dependencies 

are assigned by a machine workflow that identifies components that are specified 

to meet the requirements of software compilation. This scenario minimizes the 

arbitrariness of human-in-the-loop software naming, since the names of software 

projects are likely to be replicated with fidelity from point of origin to the build 



process, whether directly or in an indirect process that entails transfer from point 

of origin to an enterprise component repository, and from the enterprise 

component repository to the build process. Version specification as an element of 

software governance -- e.g., the requirement to specify a particular version of 

dependencies required for a software build --  enables specificity and 

disambiguation of SBOM contents.  

 

● SBOM produced outside a software build: SBOMs produced outside a software 

build, especially those collated from legacy software development processes and 

platforms of record, generally require additional software entity resolution of 

component identity. Manual and arbitrary naming conventions may be 

ambiguous or inaccurate. Even where software components accurately reflect 

the names commonly used by developers, these names may not correspond to 

the software identifiers used in vulnerability data sources such as the National 

Vulnerability Database or vendor security advisories. NIST’s proposed migration 

from Common Platform Enumeration (CPEs) as software product identifiers to 

SWID tags does not solve this problem when components are not authoritatively 

identified at point of origin or in an enterprise system of record. In many cases, 

there is ambiguity or absence of authoritative information from any source, 

including the supplier, which entails the creation of pseudo-identifiers that 

conform to the naming conventions of software identifiers in vulnerability 

databases.  

 

This entity resolution may be performed manually via lookups, semi-automatically using 

a combination of scripts and manual adjudication, or automatically by a first party or 

commercially licensed software entity resolution engine. Name assignment using 

aliases or pseudo-authoritative identifiers can be manual or automated and should 

leverage entity resolution at the supplier and component level to formulate a component 

name in the absence of authoritative external identifiers.  

 

Where possible, authoritative identifiers should be required for supplier-licensed 

components to ensure that these components, which have a contractually designated 

supplier, are consistently named across software products that include those licensed 

components. Where possible, if commercial SWID tags are used, they must include 

precise versioning of commercial software, which differs from open source components 

in its naming conventions for patch and release versions, service packs, and updates. 

The same version of a commercial software capability may differ significantly in its 

composition and security profile, depending on installed updates.  

 

Chain of Custody and Software Types 



Assuming the software components of an SBOM have been accurately resolved from a 

namespace perspective, there is still ambiguity with regard to the software type and 

point of origin for accurately named components. Specifically, the contents of a 

component acquired as open source (uncompiled) code from a source repository such 

as GitHub may differ in security-relevant ways from a binary package of the same 

component published to a package manager. Package managers often include runtime 

dependencies of the source component for which the package is named. Vulnerability 

databases map only known vulnerabilities to the component itself, as it is represented in 

the source code repository, versus the binary package from a package manager that 

includes vulnerable runtime dependencies in the binary. These binary package 

inclusions will yield false negatives on a Common Vulnerabilities and Exposures (CVE) 

lookup based on the designated SBOM components. Essentially, the packaging 

materials are not listed on the box, and the packaging materials are vulnerable.  

 

For this reason, especially for high-assurance systems and environments, software 

transparency requires either that the point of origin for a software component be 

identified, or that the customer’s default assumption for vulnerability management is that 

designated open source components have been included in the supplier deliverable as 

binary packages and therefore may contain third-party libraries and runtime 

dependencies as packaging inclusions that are not present in the open source 

repository to which the binary package manager refers as the compiled component.  

 

This coverage issue is magnified in the delivery of software containers, which often 

contain operating systems, runtime dependencies, and miscellaneous inclusions that 

are not listed in an application SBOM. SBOMs for containerized software should include 

all container contents as a top-level manifest, in addition to one or more SBOMS for the 

software payload whose delivery is enabled by the container.  

 

Risk acceptance of ambiguity regarding source vs. binary packages or containers 

should be a “known unknown” in software asset and vulnerability management, and 

should drive chain-of-custody requirements for high assurance software capabilities. 

OWASP’s Software Component Verification Standard (SCVS) includes a number of 

controls for disambiguation of components by type and point of origin.  

 

Transitive Dependency Resolution 

If an SBOM is supplied with direct software dependencies only, full software entity 

resolution entails resolution of those direct dependencies to catalog all transitive 

dependencies in the software deliverable, because it is often transitive dependencies 

that become vulnerable, and because the mapping of transitive to direct dependencies 

in vulnerability databases is not current or complete.  

https://owasp.org/www-project-software-component-verification-standard/


 

Transitive dependency resolution may be achieved using open source tools or 

commercial solutions. Unlike the entity resolution of direct dependencies, accurate and 

complete resolution of transitive dependencies is very challenging using manual 

processes -- the pyramids of nested dependencies are too large and change too fast as 

underlying components are updated and substituted in the supply chain.  

Third-Party Processes and Platforms 

Once SBOMs are satisfactorily resolved, the data within them is most usefully employed 

in processes and platforms that include: 

 

● Configuration management databases (CMDBs) 

● Software asset management (SAM) systems 

● Security operations centers (SOCs) 

● Procurement workflows, which may include pre-procurement diligence, 

contractor/vendor management systems, and third-party risk and compliance 

management and reporting 

● Software supply chain risk assessment and management functions 

 

The transformation of SBOM data from files into data feedstocks for other systems 

requires enabling processes, including: 

 

1. Auditable custody and storage of SBOM files, e.g., in a registry that records the 

date of receipt for each SBOM and the SBOM version. For legal and compliance 

reasons, version and access control to these files should be auditable, and any 

contractual requirements for confidentiality of proprietary SBOMs should be 

enforced at the registry level. 

 

2. Extraction, Transformation, and Loading (ETL) of SBOMs into enterprise 

processes and platforms requires a mapping process to correlate specific 

components to one or more applications, systems, or endpoints. Much of the 

value of these processes and platforms derives from the mapping and update 

functionality that maintains the accuracy of software inventories and 

configurations across an enterprise. In certain ways, SBOM data is similar to 

attribute data for any software asset. However, SBOM data does differ 

significantly in its volume and granularity. There is more data and more detailed 

data per software asset than for a conventional commercially-procured software 

capability with no SBOM. Therefore, the workflow volume, particularly in 

automated workflows, may scale significantly, and enterprises must plan for this.  



Ongoing Monitoring 

One of the biggest differences and greatest sources of value for SBOMs is the ability for 

end users to monitor vulnerabilities in parallel with whatever vulnerability management 

is conducted by the supplier. This “trust but verify” capability to continuously monitor the 

vulnerability status of a supplier’s software dependencies creates continuity of 

assurance by eliminating gaps in situational awareness, including: 

 

● The time it takes a supplier to detect vulnerabilities: This is especially relevant for 

software capabilities that are not being actively built or maintained. If vulnerability 

detection is done as part of static analysis in a software development pipeline, 

and the software isn’t built every day, there can be days, weeks, or even months 

when vulnerabilities are not detected by a supplier that is not actively developing 

a capability.  

 

● The time it takes for a supplier to remediate vulnerabilities once they’re detected: 

If a supplier knows there are critical vulnerabilities and is working on updates, but 

does not inform the consumer that these vulnerabilities exist, there is no 

opportunity for the consumer to implement compensating controls while the 

supplier works on remediation. 

 

● The time it takes for a supplier to ship a remediated update: Even when security 

issues are resolved, the release schedule of a supplier may create delays in the 

delivery of a remediated release, to maintain a scheduled cadence or enable the 

delivery of new features “with security updates.” With no SBOM or disclosure 

notices, the consumer is unable to implement compensating controls or make 

risk acceptance decisions before a remediated update is released.  

 

Parallel or out-of-band monitoring of SBOM components creates situational awareness 

on the consumer side, and raises the level of transparency into security remediations 

that suppliers might make to vulnerable components, which can be enumerated in a 

Vulnerabilities and Exploitability (VEX) file that accompanies an SBOM. 

 

Higher levels of transparency can enhance security. But an increase in security posture 

entails some business process and cultural change on the consumer side. Specifically, 

with regard to steps a responsible supplier may have taken to remediate security issues 

in vulnerable dependencies without removing those dependencies, e.g. by limiting 

function calls or removing subcomponents, it is important for consumers to 

acknowledge and accept valid remediations enumerated in a VEX file instead of 

demanding a “clean scan” that does not contain any CVEs. This is a shift from 

compliance to risk management, and unless that shift occurs, enterprise security 



stakeholders will be buried in findings that are not legitimate and are impossible to 

resolve.  

Intellectual Property and Confidentiality Status of SBOMs 

 

The intellectual Property (IP) status and confidentiality of an SBOM may vary depending 

on whether it is generated and/or provided by a vendor, a contractor, an employee or 

from an open source development community. But in all cases, the licensing status of 

the SBOM should be explicit and preferably enumerated within the SBOM itself. There 

are existing standards and rubrics for marking confidential materials, such as TLP.  

Confidentiality 

For vendor and contractor software deliverables, the confidentiality terms that apply to 

the SBOM, as distinct from the software deliverable itself, should be explicitly defined in 

the terms and conditions of contractual agreements. From the software consumer 

perspective, the consumer should, without limitation, be allowed to use an SBOM for 

internal purposes and be able to share the SBOM with any third-party entity that is 

subject to the same confidentiality and/or non-disclosure terms as the consumer. For 

instance, a vendor or contractor retained by the consumer under nondisclosure 

agreement to assess and assure software assets should not be precluded from access 

to SBOM data because they are not direct employees of the consumer.  

 

Likewise, seat-licensing restrictions that apply to use of a software product should not 

apply to SBOMs as a form of digital rights management. SBOMs generated and 

supplied by software development contractors performing professional services should 

be intellectual property transferred to the consumer under the same terms and 

conditions as the software deliverable(s), whether that status is a non-exclusive 

perpetual royalty-free license or work for hire.  

 

SBOMs provided by open source software suppliers, whether as part of an open source 

software project with no financial relationship to the consumer or as part of 

commercially supported open source software, should be explicitly licensed under an 

open source license. This license does not necessarily need to correspond to the open 

source license of the software itself. For instance, a software project delivered with an 

MIT license may have an SBOM delivered with a Creative Commons license. The 

default license for SPDX documents is CC0. This does not preclude additional 

contractual terms and conditions regarding the confidentiality of the SBOM.  

https://www.cisa.gov/tlp
https://creativecommons.org/share-your-work/public-domain/cc0/


Intermediary Suppliers 

If the consumer is an intermediary supplier -- an entity that receives SBOMs for 

software that is incorporated into another software deliverable with its own SBOM -- the 

consumer should confirm that SBOM information incorporated into the intermediary 

supplier’s SBOM and provided to downstream consumers meets the licensing terms 

and confidentiality conditions of the SBOMs supplied to the intermediary supplier. This 

will help prevent the intermediary supplier’s SBOM from violating either the license or 

the confidentiality provisions of the SBOMs from which the intermediary supplier’s 

SBOM was derived.  

 

For instance, if a medical IT system includes devices with confidential SBOMs, the 

license and confidentiality provisions of the IT system supplier’s agreements with its 

device suppliers should convey the right to supply the SBOM information in those 

devices to a downstream customer (e.g., a hospital system), subject to congruent 

confidentiality requirements. If those rights do not convey to downstream consumers, 

the IT system supplier must be able to authoritatively identify the device components of 

its system to the consumer, who may then request device SBOMs from device suppliers 

under separate confidentiality agreements.  

 

It is simpler and more expedient for intermediary suppliers to acquire SBOMs whose 

intellectual property status conveys the right to share the SBOM with downstream 

consumers subject to congruent confidentiality terms and conditions. This is the ideal 

default for SBOM acquisition by intermediary suppliers.  

 

If SBOM IP and/or confidentiality status precludes the identification of a software 

component by an intermediary supplier, supply chain transparency is undermined for 

downstream consumers. If such provisions exist, the existence of these provisions 

should be communicated in an SBOM, to identify omissions, redactions and “known 

unknowns”. Consumers may choose to implement more rigorous compensating controls 

for systems that have identified omissions or redactions in an SBOM that undermine 

transparency.  

References 

Sharing and Exchanging SBOMs 

https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sbom

s-10feb2021.pdf 

OWASP Software Component Verification Standard 

https://owasp.org/www-project-software-component-verification-standard/      

CISA Traffic Light Protocol Definitions 

https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://owasp.org/www-project-software-component-verification-standard/


https://www.cisa.gov/tlp 

Creative Commons CCO 

https://creativecommons.org/share-your-work/public-domain/cc0/ 

 

 

https://www.cisa.gov/tlp
https://creativecommons.org/share-your-work/public-domain/cc0/

